1.

Using appropriate right-angled triangles, show that $\tan 45^{\circ}=1$ and $\tan 30^{\circ}=\frac{1}{\sqrt{3}}$.
Hence show that $\tan 75^{\circ}=2+\sqrt{3}$.
2. You are given that $\mathrm{f}(x)=\cos x+\lambda \sin x$ where λ is a positive constant.
i. Express $\mathrm{f}(x)$ in the form $R \cos (x-\mathrm{a})$, where $R>0$ and $0<\alpha<\frac{1}{2} \pi$, giving R and a in terms of λ.
ii. Given that the maximum value (as x varies) of $\mathrm{f}(x)$ is 2 , find R, λ and a , giving your answers in exact form.
3.

Express $\cos \theta-3 \sin \theta$ in the form $R \cos (\theta+a)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$.
Hence show that the equation $\cos \theta-3 \sin \theta=4$ has no solution.
4. In Fig. 8, $O A B$ is a thin bent rod, with $O A=1 \mathrm{~m}, \mathrm{AB}=2 \mathrm{~m}$ and angle $\mathrm{OAB}=120^{\circ}$. Angles θ, ϕ and h are as shown in Fig. 8.

Fig. 8
(a) Show that $h=\sin \theta+2 \sin \left(\theta+60^{\circ}\right)$.

The rod is free to rotate about the origin so that θ and ϕ vary. You may assume that the result for h in part (a) holds for all values of θ.
(b) Find an angle θ for which $h=0$.
5.
(a) Express $\cos \theta+2 \sin \theta$ in the form $R \cos (\theta-a)$, where $0<\alpha<\frac{1}{2} \pi$ and R is positive and given in exact form.

The function $\mathrm{f}(\theta)$ is defined by $\mathrm{f}(\theta)=\frac{1}{(k+\cos \theta+2 \sin \theta)}, 0 \leq \theta \leq 2 \pi$, k is a constant.
(b)

The maximum value of $f(\theta)$ is $\frac{(3+\sqrt{5})}{4}$. Find the value of k.
6. (See Insert for Specimen 64003.) Fig. 15 shows a unit circle and the escribed regular polygon with 12 edges.

Fig. 15
(a) Show that the perimeter of the polygon is $24 \tan 15^{\circ}$.
(b) Using the formula for $\tan (\theta-\phi)$ show that the perimeter of the polygon is $48-24 \sqrt{3}$.
7. (a)

Express $2 \cos \theta+3 \sin \theta$ in the form $R \sin (\theta+\alpha)$, where $0<\alpha<\frac{1}{2} \pi$ and R is a positive constant given in exact form.
(b) Determine the set of values of k for which the curve $y=k+2 \cos x+3 \sin x$ lies completely above the x-axis.
(c)

Explain why the curve $y=\frac{1}{k+2 \cos x+3 \sin x}$ ies completely above the x-axis for the set of values of k found in part (b).
8. (a) Write down the exact values of $\tan 45^{\circ}$ and $\tan 60^{\circ}$.
(b) In this question you must show detailed reasoning.

Show that $\tan 15^{\circ}=2-\sqrt{3}$.
9. In this question you must show detailed reasoning.
(a) Express $8 \cos x+5 \sin x$ in the form $R \cos (x-a)$, where R and a are constants with R >0 and $0<\alpha<\frac{1}{2} \pi$.
(b) Hence solve the equation $8 \cos x+5 \sin x=6$ for $0 \leq x<2 \pi$, giving your answers correct to 4 decimal places.
10.
(a) Express $7 \cos x-24 \sin x$ in the form $R \cos (x+\alpha)$, where $0<\alpha<\frac{\pi}{2}$.
(b) Write down the range of the function

$$
f(x)=12+7 \cos x-24 \sin x, \quad 0 \leq x \leq 2 \pi
$$

(a) Express $\sqrt{2} \cos x-\sin x$ in the form $R \cos (x+\alpha)$, where $0<\alpha<\frac{\pi}{2}$.
(b) You are given that

$$
\mathrm{f}(x)=\frac{5}{2+\sqrt{2} \cos x-\sin x} \text { for } 0 \leq a \leq 2 \pi
$$

Find the minimum value of $\mathrm{f}(x)$, giving your answer in the form $a+b \sqrt{c}$ where a, b and c are integers to be determined.
12.
(a) Write $\cos ^{2} x$ in terms of $\cos 2 x$.
(b) Express $6 \sin 2 x+8 \cos 2 x$ in the form $R \cos \left(2 x-\theta\right.$, where $0<\theta<\frac{\pi}{2}$.

In this question you must show detailed reasoning.
(c) Hence solve the equation $6 \sin 2 x+16 \cos ^{2} x=13$ for $0 \leq x \leq 2 \pi$ giving your answers correct to 3 significant figures.

Mark scheme

	Answer/Indicative content	Marks	Guidance
1	$\begin{aligned} & \tan 75^{\circ}=\tan \left(45^{\circ}+30^{\circ}\right) \\ & =\frac{\tan 45+\tan 30}{1-\tan 45 \tan 30}=\frac{1+1 / \sqrt{3}}{1-1 / \sqrt{3}} \\ & =\frac{1+\sqrt{3}}{-1+\sqrt{3}} \\ & =\frac{(1+\sqrt{3})^{2}}{3-1} \\ & \left(\mathrm{oe} \mathrm{eg} \frac{3+\sqrt{3}}{3-\sqrt{3}}=\frac{(3+\sqrt{3})^{2}}{9-3}\right) \\ & =\frac{(3+2 \sqrt{3}+1)}{3-1}=2+\sqrt{3} * \end{aligned}$	B1B1	For both B marks AG so need to be convinced and need triangles but further explanation need not be on their diagram. Any given lengths must be consistent.
			Need $\sqrt{ } 2$ or indication that triangle is isosceles oe
			Need all three sides oe
		M1	use of correct compound angle formula with $45^{\circ}, 30^{\circ}$ soi
		A1	substitution in terms of $\sqrt{ } 3$ in any correct form
		M1	eliminating fractions within a fraction (or rationalising, whichever comes first) provided compound angle formula is used as $\tan (A+B)=\tan (A \pm B) /(1 \pm \tan A \tan B)$.
		M1	rationalising denominator (or eliminating fractions whichever comes second)
		A1	correct only, AG so need to see working

				Examiner's Comments Compound Angle Formulae There were some good explanations with appropriate triangles in the first part. However, too many candidates felt it was enough to only give the information given in the question and this was not sufficient. More was needed than, for example, a right-angled triangle with lengths of 1,1 and 45° to show that $\tan 45^{\circ}=1$. It was necessary to clearly show the triangle was isosceles by giving the other angle or showing that the hypotenuse was $\sqrt{ } 2$, or equivalent. Some made errors when calculating the other lengths in both triangles. Some good candidates failed to score here seemingly being unfamiliar with where these identities came from. The second part started well for most candidates, who usually used the correct compound angle formula, (although there were a few who thought that $\tan 75^{\circ}=\tan 45^{\circ}+\tan 30^{\circ}$) and made the first substitution. Thereafter, this question gave the opportunity for candidates to show that they could eliminate fractions within fractions and rationalise the denominator. This was a good discriminator for the higher scoring candidates. A few candidates abandoned their attempt at half way and equated $1+\frac{1}{\sqrt{3}}$ at that stage to the given answer $2+\sqrt{ } 3$. $\frac{-\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{3}}}$
		Total	7	
2	i	$\cos x+\lambda \sin x=R \cos (x-a)$	Enter text here.	Enter text here.
	i	$=R \cos x \cos a+R \sin x \sin a$		Enter text here.
	i	$\Rightarrow R \cos \mathrm{a}=1, R \sin \mathrm{a}=\lambda$	M1	Correct pairs. Condone sign error (so accept $R \sin \mathrm{a}=-\lambda$)
	i	$\Rightarrow R^{2}=1+\lambda^{2}, R=\sqrt{ }\left(1+\lambda^{2}\right)$	B1	Positive square root only - isw. Accept $R=1 / \cos (\arctan \lambda)$ or $R=\lambda / \sin (\arctan \lambda)$
		$\tan a=\lambda(\mathrm{oe})$	M1	Follow through their pairs. $\tan \mathrm{a}=\lambda$ with no working implies both M marks. However, $\cos \mathrm{a}=$ $1, \sin a=\lambda \Rightarrow \tan a=\lambda$ scores MOM1. First two M marks may be implied by combining one of the pairs with R

		$\begin{aligned} & a^{2}=1^{2}+2^{2}-4 \cos 120^{\circ} \\ & a=\sqrt{7} \\ & \sin \theta=\frac{2 \sin 120^{\circ}}{\sqrt{7}}=\sqrt{\frac{3}{7}} \end{aligned}$	M1(AO1.1) A1(AO1.1) [5]	For final mark, θ shown below horizontal in diagram together with 40.9° is accepteble	Compound Angle Formulae
		Total	8		
5	a	$\begin{aligned} & \cos \theta+2 \sin \theta^{\circ} R \cos (\theta-a) \\ & \Rightarrow R \cos a=1, R \sin a=2 \\ & \Rightarrow R 2=5, R=\sqrt{ } 5 \end{aligned}$ $\tan a=2, a=1.107$	M1(AO1.1a) B1(AO1.1) M1A1(AO1.1 1.1) [4]		
	b	$\frac{1}{\max \text { value is }} \frac{(k-\sqrt{ } 5)}{}$	M1(AO3.1a) M1 (AO1.1)		

		$\begin{aligned} & \frac{1}{(k-\sqrt{5})}=\frac{(3+\sqrt{5})}{4} \\ & 4=3 k-5+k \sqrt{5}-3 \sqrt{5} \end{aligned}$ This is indep of $\sqrt{5}$ sol $k=3$	A1(AO1.1) [3]		Compound Angle Formulae
		Total	7		
6	a	$\begin{aligned} & \text { Angle }=360 \div 24=15 \\ & \text { Edge length }=2 \tan 15^{\circ} \\ & \text { Perimeter }=12 \times 2 \tan 15^{\circ} \\ & =24 \tan 15^{\circ} \end{aligned}$	M1(AO1.1) E1(AO2.1) [2]	AG	
	b	$\begin{aligned} & \tan 15^{\circ}=\tan \left(45^{\circ}-30^{\circ}\right) \\ & 1+\frac{1-\frac{1}{\sqrt{3}}}{1-}\left[=\frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{(\sqrt{3}-1)^{2}}{2}\right] \end{aligned}$ Alternative method $\begin{aligned} & \tan 15^{\circ}=\tan \left(60^{\circ}-45^{\circ}\right) \\ & =\frac{\sqrt{3}-1}{1+\sqrt{3}} \quad\left[=\frac{2 \sqrt{3}-4}{-2}\right] \end{aligned}$	B1(AO3.1a) M1(AO1.1) B1(AO3.1a) M1(AO1.1) E1(AO2.1)	Exact values of $\tan 45^{\circ}$ and $\tan 30^{\circ}$ used Exact values of tan 60° and $\tan 15^{\circ}$ used	

		$\begin{aligned} & \text { Peimeter }=12 \times 2 \text { 2 tan } 15^{\circ} \\ & =48-24 \sqrt{3} \end{aligned}$		Correct completion AG	Compound Angle Formulae
		Total	5		
	a	$2 \cos \theta+3 \sin \theta \equiv R \sin (\theta+\alpha) \Rightarrow R \cos a=3, R \sin a=2$ $\begin{aligned} & \text { so } R^{2}=13 \Rightarrow R=\sqrt{13} \\ & \tan \alpha=\frac{2}{3} \\ & \Rightarrow a=0.588 \end{aligned}$	M1 (AO 1.1a) B1(AO 1.1) M1 (AO 1.1) A1(AO 1.1) [4]		
	b	$\sqrt{13} \sin (x+0.588)+k>0$ Mininum value of LHS is $k-\sqrt{13}$ $k>\sqrt{13}$	B1(AO 3.1a) M1(AO 1.1) M1(AO 3.1a) A1(AO 2.2a) [4]	oe Use of expression from part (a) Attempt to find minimum value	May be by calculus

9	a	$8 \cos x+5 \sin x=R(\cos x \cos a+$ $\sin x \sin a)$, so $8=R \cos a$ and $5=R \sin a$ $R=\sqrt{8^{2}+5^{2}}=\sqrt{89}$ $\alpha=\arctan \left(\frac{5}{8}\right)$ $8 \cos x+5 \sin x=\sqrt{89} \cos \left(x-\arctan \left(\frac{5}{8}\right)\right)$	M1(AO1.1a) B1(AO1.1b) A1(AO1.1b)	Equating coefficients Accept 9.43 or better Accept 0.559 or better (No penalty for omission of this step)	Compounc Angle Formulae
		$\begin{aligned} & \cos \left(x-\arctan \left(\frac{5}{8}\right)\right)=\frac{6}{\sqrt{89}}, \text { so } \\ & x-\arctan \left(\frac{5}{8}\right)=0.88149 \ldots \text { or } 2 \pi-0.88149 \ldots \\ & x=1.4401 \\ & x=5.9603 \end{aligned}$	M1(AO1.1a) A1(AO1.1a) A1(AO1.1a)	Method leading to at least one solution If a rounded value from (a) used max. A1 only	
		Total	6		
10	a	$R=25$	$\begin{gathered} B_{1} \\ (A O 1.1) \end{gathered}$		

		$\begin{aligned} & \tan ^{-1}\left(\frac{24}{7}\right)_{\text {or }} \sin ^{-1}\left(\frac{24}{25}\right)_{\text {or }} \cos ^{-1}\left(\frac{7}{25}\right) \\ & 25 \cos (x+1.29) \\ & \hline \end{aligned}$	A1 (AO 1.1)	$a=1.28700221759$ rounded to 2 or more sf Examiner's Comments The majority of candidates gained full credit, w accuracy marks on this routine item.	Compound Angle Formulae 73.739795° rounded to 2 or more sf may imply M1AO allow A1 for a found to 2 or more sf careless arithmetic resulting in dropped
	b	$12 \pm \text { their } 25$ $-13 \leq f(x) \leq 37$	$\begin{gathered} \text { M1 } \\ (\mathrm{AO} 3.1 \mathrm{a}) \\ \mathrm{A} 1 \\ (\mathrm{AO} \text { 1.1) } \\ {[2]} \end{gathered}$	or one of - 13 and 37 identified allow eg from - 13 to 37 inclusive Examiner's Comments Some candidates answered their own question	AO if inequality is strict taken directly from part (a).
		Total	5		
11	a	$\begin{aligned} & R=\sqrt{ } 3 \\ & \tan ^{-1}\left(\frac{1}{\sqrt{2}}\right) \end{aligned}$	B1 (AO1.1) M1 (AO1.1) A1 (AO1.1) [3]		

		$a=0.615$		$0.61547970 \ldots$ rounded to 2 or more significant figures	Compound Angle Formulae
	b	$\begin{aligned} & \mathrm{f}(x)=\frac{5}{2+\sqrt{3} \cos (x+0.62)} \\ & \text { At min value, } \cos (x+0.62)=1 \text { soi } \\ & 10-5 \sqrt{3} 3 \end{aligned}$	M1 (AO3.1a) M1 (AO2.1) A1 (AO1.1) [3]	FT their R BC rationalising	
		Total	6		
12	a	$\left[\cos ^{2} x=\right]^{1 / 2}(1+\cos 2 x)$	B1 (AO 1.1a) [1]		
	b	$\begin{aligned} & R=10 \\ & \theta=\arctan (0.75) \text { isw or } 0.643501 \ldots \\ & \text { to } 3 \text { or more sf } \end{aligned}$	$\begin{gathered} \mathrm{B} 1 \text { (AO 1.1) } \\ \text { B1 (AO 1.1) } \\ {[2]} \end{gathered}$		
	c	DR substitution of results from parts (a) and (b) in the equation $6 \sin 2 x+8 \cos 2 x=5$ 0.845, 3.99, 2.94, 6.08 cao	M1 (AO 2.1) A1 (AO 1.1) M1 (AO 3.1a) A1 (AO 1.1) A1 (AO 1.1)		

		[5]	if A0A0 allow A1 for all four values correct to a different precision	Compound Angle Formulae
	Total	8		

